Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 13, 2026
- 
            Free, publicly-accessible full text available April 14, 2026
- 
            Abstract PurposeTo introduce a novel deep model‐based architecture (DMBA), SPICER, that uses pairs of noisy and undersampled k‐space measurements of the same object to jointly train a model for MRI reconstruction and automatic coil sensitivity estimation. MethodsSPICER consists of two modules to simultaneously reconstructs accurate MR images and estimates high‐quality coil sensitivity maps (CSMs). The first module, CSM estimation module, uses a convolutional neural network (CNN) to estimate CSMs from the raw measurements. The second module, DMBA‐based MRI reconstruction module, forms reconstructed images from the input measurements and the estimated CSMs using both the physical measurement model and learned CNN prior. With the benefit of our self‐supervised learning strategy, SPICER can be efficiently trained without any fully sampled reference data. ResultsWe validate SPICER on both open‐access datasets and experimentally collected data, showing that it can achieve state‐of‐the‐art performance in highly accelerated data acquisition settings (up to ). Our results also highlight the importance of different modules of SPICER—including the DMBA, the CSM estimation, and the SPICER training loss—on the final performance of the method. Moreover, SPICER can estimate better CSMs than pre‐estimation methods especially when the ACS data is limited. ConclusionDespite being trained on noisy undersampled data, SPICER can reconstruct high‐quality images and CSMs in highly undersampled settings, which outperforms other self‐supervised learning methods and matches the performance of the well‐known E2E‐VarNet trained on fully sampled ground‐truth data.more » « less
- 
            Plug-and-play (PnP) prior is a well-known class of methods for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image denoisers. While PnP methods have been extensively used for image recovery with known measurement operators, there is little work on PnP for solving blind inverse problems. We address this gap by presenting a new block-coordinate PnP (BC-PnP) method that efficiently solves this joint estimation problem by introducing learned denoisers as priors on both the unknown image and the unknown measurement operator. We present a new convergence theory for BC-PnP compatible with blind inverse problems by considering nonconvex data-fidelity terms and expansive denoisers. Our theory analyzes the convergence of BC-PnP to a stationary point of an implicit function associated with an approximate minimum mean-squared error (MMSE) denoiser. We numerically validate our method on two blind inverse problems: automatic coil sensitivity estimation in magnetic resonance imaging (MRI) and blind image deblurring. Our results show that BC-PnP provides an efficient and principled framework for using denoisers as PnP priors for jointly estimating measurement operators and images.more » « less
- 
            Regularization by denoising (RED) is a widely-used framework for solving inverse problems by leveraging image de-noisers as image priors. Recent work has reported the state-of-the-art performance of RED in a number of imaging applications using pre-trained deep neural nets as denoisers. Despite the recent progress, the stable convergence of RED algorithms remains an open problem. The existing RED theory only guarantees stability for convex data-fidelity terms and nonexpansive denoisers. This work addresses this issue by developing a new monotone RED (MRED) algorithm, whose convergence does not require nonexpansiveness of the deep denoising prior. Simulations on image deblurring and compressive sensing recovery from random matrices show the stability of MRED even when the traditional RED diverges.more » « less
- 
            Parallel magnetic resonance imaging (MRI) is a widely-used technique that accelerates data collection by making use of the spatial encoding provided by multiple receiver coils. A key issue in parallel MRI is the estimation of coil sensitivity maps (CSMs) that are used for reconstructing a single high-quality image. This paper addresses this issue by developing SS-JIRCS, a new self-supervised model-based deep-learning (DL) method for image reconstruction that is equipped with automated CSM calibration. Our deep network consists of three types of modules: data-consistency, regularization, and CSM calibration. Unlike traditional supervised DL methods, these modules are directly trained on undersampled and noisy k-space data rather than on fully sampled high-quality ground truth. We present empirical results on simulated data that show the potential of the proposed method for achieving better performance than several baseline methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available